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Jiri Kovar et. al., “Virtual Reality in Context of Industry 4.0”, 2016 17th International 

Conference on Mechatronics - Mechatronika (ME)

DIGITAL TRANSFORMATION

➢ Simulation such as  

Computational Fluid Dynamics 

(CFD): Physics-based predictions

➢ Visualization (VR & AR …): 

Effective communication and 

monitoring

➢ High Performance Computing 

(HPC): Accelerate computations

➢ Machine Learning (ML):

Predictions based on historic data 

(a branch of Artificial Intelligence)

➢ Digital Twin: Virtual replicas of 

physical devices or processes
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https://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=7811890
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Steel Manufacturing Simulation and 

Visualization Consortium (SMSVC) 

CIVS (since 2009) & SMSVC (since 2016)
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Center for Innovation through 

Visualization and Simulation (CIVS) 
➢ Missions

▪ Innovation

▪ Application ($40+ million savings from 5 

out of 460+ projects)

▪ Education

➢ Strategies

▪ Integration of technologies

▪ Application driven 

▪ Partnerships (160+ organizations)

Research Areas 

1) Energy Efficiency

2) Environmental Impacts

3) Operation Efficiency

4) Raw Materials Utilization

5) Reliability and Maintenance

6) Smart Manufacturing

7) Workforce Development

8) Workplace Safety

Project Examples

▪ Blast Furnace

▪ Electric Arc Furnace

▪ Caster Digital Twins

▪ Smart Ladle

▪ Spray Cooling 

Simulator

▪ Reheating Furnace

▪ Hydrogen 

combustion
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METHODOLOGY AND BENEFITS

• Sensors
• ML
• ROM

• Text
• Pictures
• Videos

CFD, FEA, Models…

DIGITAL TWINS
• Off-line and online
• Multiple platform (VR, AR, PC, Mobile, Web)

Benefits

➢ Insight: visualizing  flow fields 

➢ Foresight: predict “future” or “what if” 

➢ Efficiency: speed-up emerging & transformative technology 

R&D in all stages (TRL1 – 9*)

*Felici, Massimo. (2015). SECurity and trust COoRDination and 

enhanced collaboration Deliverable 6.3 Identification of Future 
Emerging Issues/Topics (Final Version). 
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INTEGRATION OF DIGITAL TECHNOLOGIES

➢Efficient, effective, 

and economical

▪ Physics-based, data 

driven decisions

▪ Lower risk & shorter 

cycle for developing 

and  implementing 

transformative 

technologies

▪ Real time monitoring 

and control

▪ More effective training

▪ Better communication

A proposed Next Generation Integrated Virtual Blast Furnace  
(led by Dr. Tyamo Okosun at PNW with industry, national lab, and universities)
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The IVBF Platform will be 

applicable for many other 

iron & steelmaking processes
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➢ Issues: 

▪ Energy efficiency

▪ Pollutant Emissions

▪ Campaign life

▪ Downtime

▪ Training

➢Major Outcomes (since 2002): 

▪ Virtual blast furnaces used for
• Design

• Troubleshooting

• Optimization

• Scale-up

• Training

▪ Improvement of energy efficiency 

and emissions

▪ Downtime reduction

➢ Sponsors and Partners: 

▪ AIST, AISI, ArcelorMittal, Cleveland-

Cliffs, DOE, Stelco, SMSVC, Tata 

Steel, Union Gas, and U.S. Steel

VIRTUAL BLAST FURNACE

CFD + FEA + HPC + Visualization
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Carbon Footprint Impact

▪ For 4.5% energy savings, around 120,000 tons of CO2/year reduction per a 

typical blast furnace (BF)

▪ For 10% energy  savings, around 260,000 tons of CO2/year reduction per a 

typical BF and 4.5 million tons of CO2/year reduction across the entire U.S. 

steel industry 
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OUTCOME EXAMPLES

Baseline Design

Dual Lance Design

PCI Lance

NG Port

PCI Lance

NG Lance

Cleveland-Cliffs Blast Furnaces

➢Design: Implemented dual lance design - increased 

coal combustion efficiency by 25%

➢Optimization: Potential improvement of 2.5%

productivity using NG as PCI carrier gas

➢ Troubleshooting: Identified causes of tuyere failures

➢ H2 Injection

▪ Reduce CO2

▪ instability due to 

quenching effect

➢ Premixed NG + H2 

▪ Boost H2 rate

▪ Balance injections to 

achieve desired flame 

T and coke rate with 

lower CO2

➢ Preheated H2 Injection

➢ Preliminary results:

▪ Fundamental 

understandings 

▪ Highest stable injection 

rates

▪ Quantitative 

correlations
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➢ Process: 

▪ A novel iron smelting process developed by Carbontec Energy Corporation 

(CarbonTec) to utilize biomass to replace coke

• To produce high quality pig iron nuggets

• To significantly reduce CO2 emissions

➢ Objective (12 months):

▪ Utilizing High Performance Computing (HPC) Computational Fluid Dynamics 

(CFD) simulations to guide furnace designs for the E-Iron™ Nugget process

E-IRON NUGGET PROCESS SCALE-UP
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Mixing iron ore or steel mill wastes

with renewable biomass and a lime

flux to produce a self-reducing pellet
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➢Research and development (TRL 4&5): 

▪ Developed CFD Models for predicting the success or failure of iron reduction 

and nugget formation (13 reactions)

▪ Validated with pilot scale data with 4 cases (diff. < 5%)

➢ Scale-up (commercialization demonstration) (TRL 7&8)

▪ Recommendations for the final design of the production scale furnace 

(100,000 tonnes/yr.)

▪ 15 iterations with 6 variables: temperatures in preheating, reduction, and 

melting zones; residence time in reduction & melting zones; and briquette size 

➢ Visualization

▪ Visualization of a plant in operation

▪ CFD data integrated to show process details and highlight ways to increase 

production and lower production costs.

➢ Benefits:

▪ CFD simulations verified the technology, provided better understanding, and 

assisted in the final design to avoid pitfalls 

▪ Visualization helped for marketing and convincing investors  

▪ Three lines (100,000 tonnes/year/line) to be built in Burns Harbor, Indiana

PROJECT OUTCOMES
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Temperature

[K]

1474K

1735K
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HIGH PERFOMANCE COMPUTING
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➢ Benefits: Speed up computational time with more details

➢ HPC availability: national labs, universities, companies, & 

cloud

➢ DOE AMO HPC for Manufacturing (HPC4Mfg) 

Program

▪ Two regular solicitations annually, fall & spring

▪ Eligibility: U.S. manufacturers

▪ Submission: 1) concept paper; 2) full proposal

▪ Budget: $300,000 for phase 1 to support computing 

cycles and work performed by National Labs, 

universities, and non-profit partners.

▪ Cost share: 20% from industry

▪ National Labs: LLNL, ANL, ORNL

▪ PNW CIVS & SMSVC Role: 

• Subcontractor of national labs

• Participated in 6 projects

Example 

Utilizing HPC to Model the E-Iron Nugget

➢ CarbonTec

▪ Principal Investigator to submit proposals

and sign CRADA with LLNL

▪ Provide geometry and operating conditions

▪ Implement results

➢ LLNL

▪ HPC facility

▪ Selection of experimental data for validation

▪ Verification of chemical kinetics

▪ Review models and results

➢ PNW CIVS

▪ Subcontractor from LLNL

▪ Developed and validated CFD Models

▪ Run CFD simulations on LLNL cluster

▪ Create visualization simulators
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DIGITAL TECHNOLOGIES TO ACCELERATE 

DEVELOPMENT PROCESS

https://www.digitalengineering

247.com/article/the-role-of-
cfd-in-product-development/



centers.pnw.edu/civs civs@pnw.edu 12

DIGITAL TECHNOLOGIES TO ACCELERATE 

DEVELOPMENT PROCESS

➢ TRL 2: Technology concept formulated (CFD ) - Refine new concept, evaluate feasibility

➢ TRL 3: Experimental proof of concept (CFD) - Complementary to lab scale prototype, identify key 

parameters, verification of the proof of concept 

➢ TRL 4: Technology validated in lab (CFD) - Complementary to small-scale prototype integrated with 

complementing subsystems, validation of the new technology 

➢ TRL 5: Technology validated in relevant environment (CFD, Visualization) - Complementary to large 

scale prototype integrated with supporting components, assess parameters for scale-up

➢ TRL 6: Technology pilot demonstrated in relevant environment (CFD, Visualization) - Assist in 

demonstrating the technology as fine-tuned to a variety of operating conditions in relevant environment.

➢ TRL 7: System prototype demonstration in operational environment (CFD, Visualization, Process 

Modeling) - Assist in demonstrating full scale pre-commercial system is demonstrated in operational 

environment, verify and validate the integration of upstream and downstream technologies

➢ TRL 8: System complete and qualified (CFD, Visualization, Process Modeling, ML, ROM, Digital 

Twins) - Assist in finalizing the technology for deployment and stable operation, training and 

maintenance documentation, and integration at system level 

➢ TRL 9: System proven in an operational environment (CFD, Visualization, Process Modeling, ML, 

ROM, Digital Twins) - Assist in proving the technology fully operational and ready to be 

commercialized, system optimization for full-rate production.
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➢ Culture evolution

➢ Connection to practical, real-world applications

➢ Physics-based, data driven, rapid predictions

➢ Big data (quality and completeness)

➢ Model validations

➢ Integration 

➢ Collaboration

➢ Workforce development

CHALLENGES AND OPPORTUNITIES

Advanced digital technology plays a key role in developing transformational 

technologies for Zero-emission Ion-and Steelmaking!
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Modeling

Big Data

ML

Sensors

• INDUSTRY 4.0

• SMART STEEL MANUFACTURING

• DIGITAL TRANSFORMATION

Simulation

AR/VR 

Visualization

IoTCloud 

HPC

Cybersecurity

FUTURE STEELMAKING

14
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THANK YOU!
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➢All the government funding agencies

➢All the company sponsors

➢All the collaborators

➢SMSVC member companies

➢CIVS faculty, staff, and students

civs@pnw.edu

centers.pnw.edu/civs

www.steelconsortium.org

https://centers.pnw.edu/civs
https://centers.pnw.edu/civs
http://www.steelconsortium.org/
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3-D CASTER DIGITAL TWIN

➢ Objective: To develop and deploy 3-D digital twin of a continuous casting process for producing 

steel slabs both offline and online

▪ Track casting parameters relevant to slab quality

▪ Track equipment, sensor and modeling parameters relevant to machine condition

➢ Sponsor & Partners: CESMII, Arcelormittal, Cleveland-Cliffs, PNW 

Penn, Johann; Pennerstorfer, Paul; Jungbauer, Andreas. "New Generation of Continuous Casting Plants with Intelligent Manufacturing 
Strategy" BHM Berg- und Hüttenmännische Monatshefte 11 Vol. 1632018; SN  - 1613-7531; UR  - https://doi.org/10.1007/s00501-017-0694-4

Digital Twin

▪ Digital replica of an actual physical caster

▪ Track important aspects of a process real-

time and retrospectively

▪ Integration of real-time sensor-generated 

data, IoT, physics-based models (e.g.

CFD), AI, machine learning and software 

analytics with 3D graphics tools

▪ Continuously update and change during 

operation

▪ Feedback to the control system
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PROTOTYPE CASTER DIGITAL TWIN

OPERATING CONDITIONS

• Heat number

• Steel grade

• Casting speed, spray 

distribution

• Ladle weight

• Superheat

VISUALIZATION

• Caster Health Monitor

• Off-line data stepping

• Sarclad data graphical display

SENSOR DATA

• Bearing cooling

• Mold cooling

• Machine Cooling

MODEL DATA

• Sarclad data

• Slab quality 

tracking (GCM, 

CSQ, Dimensions

• CFD

CASTER OPERATION

• Operators and 

engineers

• Caster control room

• Maintenance
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DYNAMIC SPRAY COOLING CONTROL
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Step 1

Conditions

Step 2

High-fidelity CFD 

simulation

Step 3

HTC 

correlation

Step 4

HTC 

Predictor

➢Motivations:

▪ Dynamic control of spray water rate for 

continuous casting is critical to enhance 

steel strength.

▪ Heat transfer coefficient (HTC) 

distribution under each nozzle is required 

as boundary condition.

▪ HTC is often correlated with nozzle 

parameters & operating conditions.

▪ Experiment-based correlation 

development is labor-intense & 

expensive.

➢HTC Predictor:

▪ Multi-selection of HTC correlations

▪ Customizable correlation coefficients 

based on a specific caster

Applications

• On-line real-time dynamic spray control

• Off-line/on-line malfunctioning nozzle identification

• Off-line nozzle selection

• Off-line researcher/operator training
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SMART LADLE

➢ Process: Ladle is used for transporting liquid steel from EAF or BOF to caster and for steel refining

➢ Current Issue: Casting temperature control by adjusting LMF temperature by operator experience

➢ Objectives:

▪ To develop an AI tool for ladle operation

• To accurately correlate casting temperature with known input variable conditions

• To improve operational responses for casting temperature control

▪ To develop generalized procedures for applying deep learning  to other steelmaking processes

➢ Impacts: 

▪ Consistent casting quality

▪ Increased productivity and energy efficiency

➢ Sponsors:  AIST & SMSVC
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SMART LADLE ON-SITE IMPLEMENTATION

Example

➢ Steel Dynamics, Inc. 

Butler Division, IN

➢ Integrated with on-site 

production database for 

operator control 

interface

➢ Accuracy of predictions 

meets industry needs

▪ Current average error 

of 3°F, which is better 

than desired (5°F)


